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ECS 20 – Fall 2021 – P. Rogaway                                  Recursion  
 
 
 
Thinking recursively 
 
Closely tied to induction (at least it feels close to me!) is the ability to think 
recursively. 
 
The key to thinking recursively is this: don’t let your mind “descend” into 
the recursion; instead, think of smaller solutions as being solved as if by 
magic. 
 
Example 1: Counting possible tic-tac-toe games 
 
Let’s count N0 = total number of possible tic-tac-toe games, where X moves 
first.  I’m going to assume I have a computer to help me out with the work. 
 
It’s good to first get a ballpark figure and use this to ascertain if our 
recursive decomposition is going to give a number, in a reasonable amount 
of time, when programmed up.  For this we would note that N < 9! = 362880 
≈ 218.5 . If you think back to the comments I made on what is practical, this is 
on the side of easy.  Way less than 230.  
 
Regard a tic-tac-toes position as encoded by a string w from {X,O,-}9.  That 
is, we regard a board as a 9-character string. Not all of the 39 possible strings 
can arise. But it’s still a good way to represent a board. 
   
Let S(x) be the set of all next-possible-positions. Ex: 
    S(--- -X- ---) =  {O-- -X- ---,    -O- -X- ---,    --O -X- ---,   --- -OX- ---,  
                                --- -XO ---, --- -X- O--, --- -X- -O-, --- -X- --O}.   
On the other hand, S(OO- XXX ---) = ∅, as X has already won in this 
game.  Note that either S(w )= ∅  or | S(w )| is the number of dashes in 
the string w. 
 
Let N(w) = number of games that can continue from board w. 
So we want to know N 0= N (--- --- ---). 
 
It is easy to compute N recursively.  It’s  
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                  1 if S (w)  = ∅ 
N(w) = 
                  Sum     N(y) 
                y  ∈ S(w)  
 
 
For example, N(--- --- ---)=N(X-- --- ---)+N(-X- --- ---)+ … +N(--- --- --X). 
 
We can code it up!!  The answer is N 0= 255,168 possible games.   Took me 
22 lines of code: 
 
# Counts the number of possible tic-tac-toe games  
# Uses recursively defined N(w) = number of continuations of board w.  
# The board is represented as a 10-element list of 'X', 'O', '-' chars, element 0 unused.  
 
X,O,EMPTY,UNUSED= 'X','O','-','.' 
Wins = [[1,2,3],[4,5,6],[7,8,9], [1,4,7],[2,5,8],[3,6,9], [1,5,9],[3,5,7]] 
 
def win(w,P):              # return true if player P has won. P==X or P==O 
    for [a,b,c] in Wins: 
        if w[a] == w[b] == w[c] == P: return True 
    return False 
 
def whose_move(w):         # Return X or O depending on whose move it is 
    if w.count(EMPTY)%2: return X 
    return O 
 
def game_over(w):          # True after a win or nowhere left to go   
    return win(w,X) or win(w,O) or w.count(EMPTY)==0 
 
def N(w):                  # Calculate number of games that elaborate board  
    if game_over(w): return 1 
    sum = 0 
    for i in range(1,10): 
        if w[i]!=EMPTY: continue 
        y = w[:] 
        y[i] = whose_move(w) 
        sum += N(y) 
    return sum  
 
w = [UNUSED] + [EMPTY]*9   ###  MAIN PROGRAM  ### 
print('Number of possible games is', N(w)) 

 
Example 2: The Towers of Hanoi 
 
          -|-              |               | 
         --|--             |               |     
        ---|---            |               | 
       ----|----           |               | 
===========|===============|===============|========== 
         A       B               C 
 
n rings of increasing diameter are placed on peg A.  The pegs must be 
moved from A to C in a way that respects the following rules: 
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• Only the topmost ring on a peg can be moved. 
• A bigger ring cannot be placed atop a smaller one. 

 
Problem: Find a function that describes the least number of moves needed 
to solve the problem when you have n rings. 
 
How many moves do you think it takes to move the four rings?  One student 
guessed, knew, or figured out the correct answer if 15. Where does this 
come from?! 
 
We want a formula that specifies a number of moves that is both: 
 

• Sufficient: there is a solution to the game using this number of moves. 
• Necessary: no solution can use fewer moves than this. 

 
Sufficiency, and the value of generalizing:   First, let’s define what we’re 
interested in. We could write: let  
 
Let Tn = The minimum number of moves needed to move the n rings from 
peg A to peg C (obeying the rules of the game). 
 
But it’s useful to be more general: 
 
Let Tn = The minimum number of moves needed to move n rings from some 
one specified peg to some other specified peg (obeying the rules of the 
game). 
 
// Transfer n pegs from A to C using B as intermediate 
algorithm TH (n, A,B, C) // Alternative convention A,B,C ? 
if n = 1 then Move(A,C) 
TH(n-1, A,B, C) 
Move(A,C) 
TH(n-1, B,C, A) 
 
Think recursively. Assume a “black box” algorithm can move the first n - 1 
rings from any peg to any other peg.  Solving the problem this way requires 
that the first n - 1 rings be moved, then the largest ring be moved once, then 
the smaller rings be moved on to the largest ring.  This number of moves can 
be represented by: 
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Tn    ≤   Tn-1 + 1 + Tn-1   =   2Tn-1 + 1 
 
 
Necessity.  Now we have to reason about any algorithm that solves the 
puzzle.  Any solution must move the largest ring to the final peg for the very 
last time. That takes one move.  But before that happened, we had to get the 
n-1 rings that were formerly on top of the start peg and move them off to a 
free peg.  That takes at least Tn-1 moves. After we got the biggest ring to its 
destination peg, we had to move the n-1 smaller rings from the free peg 
where they were at to the final peg. That takes at least Tn-1 moves. So, all in 
all, any solution needs to spend at least  
 
Tn   ≥   1 + Tn-1 + Tn-1  =  2Tn-1 + 1  
 
moves. 
 
Solution:   Tn = 2n -1  
 
To get this: first, make a table of values from the recursion relations. From 
the table one can make a natural guess. Then we can prove that by induction. 
Go through all steps.  
 
Example 3: Karatsuba multiplication  (1960/1962)   
 
Suppose we want to multiply two decimal numbers (binary numbers would 
work the same way).  We write one number as x = x1 || x0 and the other was y 
= y1 || y0, each half having m digits (let’s not worry about what to do if m is 
odd; no significant complications are added). So  
 
x = x1 10m + x0 
y = y1 10m + y0, 
 
The product is then 
xy = (x110m + x0)(y110m + y0) 
     = z2102m + z110m + z0 
where 
z2 = x1y1 
z1 = x1y0+ x0y1 
z0 = x0y0. 
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These formulas require four multiplications.  Thus one way to multiply 
decomposes our size-n problem into four problems of size n/2, plus some 
added overhead that is O(n). 
 
T(n) = 4T(n/2) + n 
 
We will see shortly that decomposition does no better, asymptotically, 
than grade-school multiplication. 
 
Karatsuba observed that xy can be computed in only three multiplications 
of m-digit values:  With z0 and z2 as before we can calculate z1  by way of 
 z1 = (x1 + x0)(y1 + y0) - z2 - z0    = (x1 + x0)(y1 + y0) - x1y1 - x0y0 = x1y0 + x0y1 
 
Example Let’s compute  
 
     98  76 
  *  56  78 
  --------- 
       5928 
     7644 
     4256  These two sum to 11900, which we can also get as 
   5488     11900 = (98+76)(56+78) – 5928 - 5488 
  ---------       =        174*134 - 5928 - 5488  
   56075928       =          23316 – 5928 - 5488 
                  = 11900                       
 
Now let’s see if this trick help: 
 
 
First, the 4-multiply method: 
T(n) = 4T(n/2) + n           (when n > 1;    T(n) = const when n = 1) 
          = 4(4T(n/4) + n/2) + n 
          = 42 T(n/4) + 2n + n 
          = 43 T(n/8) + n(1 + 2 + 4) 
          = 44 T(n/24) + n(1 + 2 + 22 + 23) 
          = … 
          =  4k + n(2k – 1) 
          ∈ θ (n2) + θ (n2) 
          ∈ θ (n2) 
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Now, the 3-multiply method: 
T(n) = 3 T(n/2) + n 
          = 3 (3T(n/4) + n/2) + n 
          = 32 T(n/4) + (3n/2 + n) 
          = 32(3T(n/8) + n/4) + 3n/2 + n 
          = 33 T(n/8) + 32n/22 + 3n/2 + n 
          = 33 T(n/8) + n(1 + 3/2 + (3/2)2)) 
          = 34 T(n/16) + n (1 + (3/2) + (3/2)^2 + (3/2)^3) 
          = … 
          =  3 k T(n/2k) + n (1 + (3/2) + (3/2)2 + (3/2)3 + … + (3/2)k-1) 
    
At this point it would be good to know what is  
         S  = 1 + p + p2 + … + p k-1 +  pk 
        S p =      p + p 2 + … + p k    + p k+1 
    S p + 1= 1+ p + p 2 + … + p k    + p k+1 
    S p  + 1= S + p k+1 
  S(p -1) = p k+1 – 1 
           S =  (p k+1 – 1)   /    (p -1) 
 
It is worth remembering this result (or be able to re-derive it if you need it). 
    1 + p + p 2 + … + p k-1  = (p k – 1)   /    (p -1) 
 
 
So, with p = 3/2, we have  
 1 + (3/2) + (3/2)2 + (3/2)3 + … + (3/2)k-1 = 2 (3/2 – 1 ) k  
 
  3k T(n/2k) + n (1 + (3/2) + (3/2)2 + (3/2)3 + … + (3/2)k-1) 
          = 3 k T(n/2k)    +   2n  ((3/2)k – 1)  
 
Now we want k = lg n, so  
= 3 lg n    + 2n (3/2)lg n 
= (2lg 3)lg n + 2n  3lg n / 2lg n 
=  n lg 3  +  2 n lg 3 
∈  θ (n lg 3) 
⊆  O (n 1.585) 
 
Best-known algorithm for this problem: we can actually multiply two n-
digit numbers in time O (n log n).   This is due to Harvey and van der 
Hoeven (2019). It follows a steady improvement in running times that begin 
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with Karatsubu, continues with a famous result of Schönhage–Strassen 
(1971) that takes O(n log n  log log n).    
 
The O(n log n) multiplication algorithm is https://tinyurl.com/3zhk24xe  
 
Example 4: Binary Search  
 
No doubt many of you have encountered this algorithm before. The 
algorithm is meant to determine if an element x is in a n-element sorted 
listed of ordered elements. We first compare x with the middle element p 
(when n is even you’ll need to be just to the left or just to the right of the 
non-existent middle, but let’s ignore that detail.)  If x=p you answer Yes, 
that it’s in the list. If x<p then you need to recurse on the left half L.  
Otherwise you need to recurse on the right half R.   
 
Write out the algorithm … 
 
Now to analyze its running time: 
 
T(n) = T(n/2) + 1 
 
We can use repeated substitution, as before, to get that T(n) ∈ θ (lg n).  
 
Example 5: Mergesort 
 
algorithm Sort(A) 
n ← |A| 
if n = 1 then return A 
Left ← Sort (A[1 .. ⌊n/2 ⌋]) 
Right ← Sort (A[⌊n/2⌋+1 .. n) 
return Merge(Left, Right) 
 
 
Analysis:   Let T(n) be the worst-case number of comparisons to sort n 
items using the algorithm above.  Then  T(n) = 2 T(n/2) + n-1.   Show 
how to bound it by replacing the n-1 with n and then using repeated 
substitution, as before, to get T (n) = n lg n.    
 
An alternative is to think of a “recursion tree”.  Each level of the tree records 
the size that the recursive calls are invoked on. Compute a partial sum for 

https://tinyurl.com/3zhk24xe
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each level of the tree that captures all additive overhead.  Sum up all those 
partial sums to get the total.  In this example: 
                                                     n                                                   n 
 
                                   n/2                           n/2                                  n 
 
                           n/4       n/4                 n/4        n/4                          n 
The tree will have lg n levels, each full, so the sum 
of the numbers on the right will be n lg n, and the total time for  
our algorithm will be T (n) = n lg n.    
 
Example 6: Partition numbers 
 
How many ways p(n) can we write n as the sum of positive numbers? 
Order of addends doesn’t matter. 
 
1 = 1                                                                 So P(1)=1 
2 = 2, 1+1                                                           So P(2)=2 
3 = 3,  2+1, 1+1                                                So P(3)=3 
4 = 4, 3+1, 2+2, 2+1+1, 1+1+1+1                                        So P(4)=5 
5 = 5,4+1,3+2,3+1+1,2+2+1,2+1+1+1,1+1+1+1+1       So P(5)=7 
 
p(n, m) = number of ways to partition n where the maximum number 
used among the addends is m        
                p(n) = p(n, 1) + p(n,  2) + … + p(n, n)                
               p(n, m) = p(n-m, m) + p(n-m, m-1) + … + p(n-m, 1) 
  p(n,1) = 1     p(n, n)=1   
p(n, m) = 0 if n<m 
p(n, m) = 1 if n=m 
 
    m=1   2   3   4   5   6   7   8   9   p(n) 
n=1   1   0   0   0   0   0   0   0   0   1 
n=2   1   1   0   0   0   0   0   0   0   2 
n=3   1   1   1   0   0   0   0   0   0   3 
n=4   1   2   1   1   0   0   0   0   0   5 
n=5   1   2   2   1   1   0   0   0   0   7 
n=6   1   3   3   2   1   1   0   0   0   11 
n=7   1   3   4   3   2   1   1   0   0   15  
n=8   1   4   5   5   3   2   1   1   0   22 
n=9   1   4   7   6   5   3   2   1   1   30 



9 
 

 
 
More practice with recursion trees 
 
Let’s try the recurrence relation  
 
 T(n) = T(n/2) + T(n/3) + n2 
 
This would correspond to a recursive decomposition of a problem that we 
can solve by breaking the problem into a half-size chunk and a third-size 
chunk and combining those results, and the original problem instance, in 
O(n2) time, to solve our initial problem.   
 
Well, we could use repeated-substitution, but I think that a recursion tree 
will be more easier.    The “top” of the tree would look like this: 
 
                                         n                                n2 
 
                       n/2                           n/3               n2 (1/2+1/3) = n2(5/6) 
 
                n/4       n/6               n/6        n/9        n2 (1/4+1/3+1/9) = n2(25/36)  
                                          ….  
 
We want to add up all the red numbers on the right. But it’s not so simple 
what happens to them. Long root-to-leaf in the tree will have different 
lengths than short root-to-leaf paths—the tree is not “full”.  And while its 
seems clear that the sum of the constants multiplying n2 will converge to 
some constant, it’s might not clear what constant it converges to.  (Although 
that is not hard.  For 0<p<1, the infinite series 1 + p + p2 + … is easily show 
to be 1/(1-p), where p=5/6, so even if the tree were infinite the sum of the 
red values would only be 6n2.  There will be θ (n) leaves on our tree, so their 
contribution to the sum will be smaller than the (red) additive overhead.  We 
conclude that T(n) is O(n2), and since it is clearly Ω(n2) too (we get that 
from even the first recursive call), we can conclude that T(n) ∈ θ (n2), 
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Addendum: Some material not covered 
 
Example 7: Cake cutting    
  
See http://www.cs.berkeley.edu/~daw/teaching/cs70-s08/notes/n8.pdf for 
a nice writeup 
 

1. If n = 2, use the cut-and-choose protocol. Otherwise: 
2. The first n−1 participants divide the cake by recursively invoking 

this procedure. 
3. For i = 1,2,...,n−1, do: 

a) Participant i divides her share into n pieces she considers of 
equal worth (by her measure). 

b) Participant n collects whichever of those n pieces he considers 
to be worth most (by his measure). 

 
Number of cuts: 
 
T(n) = T(n-1) + (n-1)2 
      
1        2       3      4      5      6        
0        1       5      14   30    55      
 
T(n) = T(n-1) + (n-1)2 
          = T(n-2) + (n-1)2 + (n-2)2  
          = T(n-3) + (n-1)2 + (n-2)2 + (n-3)2 

           = T(n-3) + (n-1)2 + (n-2)2 + (n-3)2  

            = 1 + 22 + 32 + 42 + … +   (n-1)2  
        approx.    Integeral1n   x2   approx n3/3  
 

 
 
Prove by induction. 
 
Not covered in class: 
 
“Master Theorem” for many recurrences 

http://www.cs.berkeley.edu/%7Edaw/teaching/cs70-s08/notes/n8.pdf


11 
 

 
https://brilliant.org/wiki/master-theorem/ 
 
 

 
 
https://randerson112358.medium.com/master-theorem-909f52d4364 
 

 
 
 

https://brilliant.org/wiki/master-theorem/
https://randerson112358.medium.com/master-theorem-909f52d4364

